Characterization of Essential Oils of Teclea nobilis and Zanthoxylum gilletii chemical profile of essential oil
Main Article Content
Keywords
Essential oils, Teclea nobilis, Zanthoxylum gilletii, bioactive compound, Rutaceae, antimicrobial
Abstract
Essential oils are believed to be rich in bioactive compound which generally contribute to the overall medicinal value of a plant species. Rutaceae plants are mostly used by the traditional herbalist to treat different kind of ailments. Therefore, this research was to determine the occurrence, chemistry, biological activity and possible utilization of Zanthoxylum giletii and Teclea nobilis as antimicrobial. The extraction of essential oils was conducted in laboratory located in Center for African medicinal flora and fauna, Masinde Muliro University of Science and Technology, Kakamega, Kenya using hydro-distillation in a modified Clevenger apparatus. GC-MS analysis was used to determine the chemical constituent of essential oil of Zanthoxylum gilletii and Teclea nobilis, (γ-Terpinene, (Z)-3,7-dimethyl-1,3,6-Octatriene and Isoelemicin) and Sabinene, α-Pinene and (R)-4-Methyl-1-(1-methylethyl)-3-cyclohexen-1-ol) were identified as the major composition of Teclea nobilis and Zanthoxylum giletii respectively. γ-Terpinene (0.64-3.76%), α-Humulene (0.08-1.58%), α-Pinene (1.38-26.20%), α-Cubebene (0.03-0.6%) and Caryophyllene oxide (0.24-7.09%) were identified in all the essential oils of plants used in current study. The presence of oxygenated monoterpenes and sesquiterpenes suggests that the essential oils could be effective in managing secondary infections.
References
Adedokun, K. A., Imodoye, S. O., Busari, A. O., Sanusi, M. A., Olawuyi, A., & Oyeniyi, M. G. (2023). Antipyretic Agents from Plant Origins. Phytochemical Drug Discovery for Central Nervous System Disorders: Biochemistry and Therapeutic Effects, 327-358.
Adesina, S. K. (2005). The Nigerian Zanthoxylum; chemical and biological values. African Journal of Traditional, Complementary and Alternative Medicines, 2(3), 282-301.
Al-Rehaily, A. J. (2001). Chemical and biological evaluation of essential oil of Teclea nobilis leaf. Pakistan Journal of Biological Sciences, 4(2), 166-168
Ayele, T. T., Gurmessa, G. T., Abdissa, Z., Melaku, Y., Garg, A., Bedane, K. G., & Abdissa, N. (2023). Furoquinoline and bisindole alkaloids from the roots of Teclea nobilis and their in-silico molecular docking analysis. Zeitschrift für Naturforschung C, 78(5-6), 217-227.
Barrero, A. F., Herrador, M. M., Arteaga, P., & Catalan, J. V. (2008). Germacrone: occurrence, synthesis, chemical transformations and biological properties. Natural Product Communications, 3 (4), 1934578X0800300418
Bibi, N., Rizwan, M., & Ali, M. (2024). Biological Importance of Essential Oils from the Family Rutaceae. In Phytochemical and Pharmacological Investigation of the Family Rutaceae (pp. 125-145). Apple Academic Press.
Bibi, N., Rizwan, M., & Ali, M. (2024). Biological Importance of Essential Oils from the Family Rutaceae. In Phytochemical and Pharmacological Investigation of the Family Rutaceae (pp. 125-145). Apple Academic Press.
Bussmann, R. W., Paniagua-Zambrana, N. Y., & Njoroge, G. N. (2020). Teclea simplicifolia Engl. Vepris dainelii (Pic. Serm.) Mziray Vepris nobilis Delile. Rutaceae. In Ethnobotany of the Mountain Regions of Africa (pp. 1-9). Cham: Springer International Publishing.
Chepkirui, C., & Kagia, R. (2020). Vepris nobilis plant: a potential source of anticancer agents. International Journal of Research in Medical Sciences, 8(9), 3203.
Choi, Y. W., Kim, H. J., Park, S. S., Chung, J. H., Lee, H. W., Oh, S. O., ... & Yoon, S. (2009). Inhibition of endothelial cell adhesion by the new anti-inflammatory agent α-iso-cubebene. Vascular pharmacology, 51 (4), 215-224
Christofoli, M., Costa, E. C. C., Bicalho, K. U., de Cássia Domingues, V., Peixoto, M. F., Alves, C. C. F., ... & de Melo Cazal, C. (2015). Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Industrial Crops and Products, 70, 301-308.
Fenibo, E. O., Christian, R., & Matambo, T. S. (2023). Biopesticide commercialization in African countries: successful case studies. In Development and Commercialization of Biopesticides (pp. 297-328). Academic Press.
Groppo, M., Afonso, L. F., & Pirani, J. R. (2022). A review of systematics studies in the Citrus family (Rutaceae, Sapindales), with emphasis on American groups. Brazilian Journal of Botany, 45(1), 181-200.
Groppo, M., Pirani, J. R., Salatino, M. L., Blanco, S. R., & Kallunki, J. A. (2008). Phylogeny of Rutaceae based on twononcoding regions from cpDNA. American journal of botany, 95(8), 985-1005.
Japeth, O. O., Josphat, M. C., & John, V. M. (2014). Chemical composition and larvicidal activity of Zanthoxylum gilletii essential oil against Anopheles gambiae. African Journal of Biotechnology, 13(21).
Jemâa, J. M. B., Tersim, N., Toudert, K. T., & Khouja, M. L. (2012). Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. Journal of Stored Products Research, 48, 97-104.
Kathambi, V., Mutie, F. M., Rono, P. C., Wei, N., Munyao, J. N., Kamau, P., ... & Wang, Q. F. (2020). Traditional knowledge, use and conservation of plants by the communities of Tharaka-Nithi County, Kenya. Plant diversity, 42(6),
479-487.
Khalil, A. A., Khan, M., Rauf, A., Naz, S., Al-Awthan, Y. S., & Bahattab, O. (2024). The Family Rutaceae: An Overview of Its Traditional Uses. Phytochemical and Pharmacological Investigation of the Family Rutaceae, 15-31.
Kisangau, D. P., Hosea, K. M., Joseph, C. C., & Lyaruu, H. V. (2007). In vitro antimicrobial assay of plants used in traditional medicine in Bukoba rural district, Tanzania. African Journal of Traditional, complementary and alternative
medicines, 4(4), 510-523
Lucchesi, M. E., Chemat, F., & Smadja, J. (2004). Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. Journal of Chromatography a, 1043(2), 323-327
Negi J.S, Bisht VK, Bh AK, Singh P, Sundriyal RC (2011). Chemical constituents and biological activities of the genus Zanthoxylum: a review. African Journal of Pure and Applied Chemistry 5(12):412-416
Njogu MK, Matasyoh JC, Kibor AC. (2014). Chemical composition and antihelmintic activity of Teclea nobilis essential oil against Schistosoma mansoni miracidia. Journal of Pharmaceutical Biomed Science, 4(10), 880-886
Nyunja, A. R. O., Onyango, J. C., & Erwin, B. (2009). The Kakamega Forest medicinal plant resources and their utilization by the adjacent Luhya community. International Journal of Tropical Medicine, 4(3), 82-90
Ocheng, F., Bwanga, F., Joloba, M., Softrata, A., Azeem, M., Pütsep, K., ... & Gustafsson, A. (2015). Essential oils from ugandan aromatic medicinal plants: chemical composition and growth inhibitory effects on oral pathogens.
Evidence-Based Complementary and Alternative Medicine, 2015
Okagu, I. U., Ndefo, J. C., Aham, E. C., & Udenigwe, C. C. (2021). Zanthoxylum species: a comprehensive review of traditional uses, phytochemistry, pharmacological and nutraceutical applications. Molecules, 26(13), 4023.
Ombito, J. O., Chi, G. F., & Wansi, J. D. (2021). Ethnomedicinal uses, phytochemistry, and pharmacology of the genus Vepris (Rutaceae): A review. Journal of Ethnopharmacology, 267, 113622.
Ombito, J. O., Salano, E. N., Yegon, P. K., Ngetich, W. K., & Mwangi, E. M. (2014). A review on the chemistry of some species of genus Lippia (Verbenaceae family). J. Sci. Innov. Res, 3(4), 460-466.
Omo-Omorodion, B. I., & Adetunji, C. O. (2024). Significance of essential oils for the treatment of infectious diseases. In Applications of Essential Oils in the Food Industry (pp. 329-337). Academic Press.
Omujal, F. (2019). Phytochemistry and Ethnopharmacology of Vebris nobilis Delile (Rutaceae). Natural Drugs from Plants.
Omujal, F. (2021). Phytochemistry and Ethnopharmacology of Vebris nobilis Delile (Rutaceae). In Natural Drugs from Plants. IntechOpen.
Omujal, F., Tenda, K. I., Lutoti, S., Kirabo, I., Kasango, S. D., & Nambatya, K. G. (2020). Phytochemistry and anti-inflammatory activity of ethanolic root bark extract of Vepris nobilis Mziray (Rutaceae family). Scientific African, 9, e00484.
Predoi, D., Iconaru, S. L., Buton, N., Badea, M. L., & Marutescu, L. (2018). Antimicrobial activity of new materials based on lavender and basil essential oils and hydroxyapatite. Nanomaterials, 8(5), 291.
Prieto, A., Möder, M., Rodil, R., Adrian, L., & Marco-Urrea, E. (2011). Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresource technology, 102(23), 10987-10995.
Rosato, A., Maggi, F., Cianfaglione, K., Conti, F., Ciaschetti, G., Rakotosaona, R., ... & Corbo, F. (2018). Chemical composition and antibacterial activity of seven uncommon essential oils. Journal of EssEntial oil rEsEarch, 30(4), 233-243.
Sadgrove, N. J. (2022). Purely australian essential oils past and present: Chemical diversity, authenticity, bioactivity, and commercial Value. Diversity, 14(2), 124.
Sharmeen, J. B., Mahomoodally, F. M., Zengin, G., & Maggi, F. (2021). Essential oils as natural sources of fragrance
compounds for cosmetics and cosmeceuticals. Molecules, 26(3), 666.
Sinha, S., Saeed, S. T., Khan, A., & Samad, A. (2024). Medicinal and aromatic plants-I. In Viral Diseases of Field and Horticultural Crops (pp. 817-825). Academic Press.
Stashenko, E. E., Jaramillo, B. E., & Martı́nez, J. R. (2004). Comparison of different extraction methods for the analysis of volatile secondary metabolites of Lippia alba (Mill.) NE Brown, grown in Colombia, and evaluation of its in vitro antioxidant activity. Journal of chromatography A, 1025(1), 93-103
Tegegne, H. (2023). The acute toxicity, antimicrobial and anti-inflammatory profile of the ethanolic and acetone extract of the leaves Teclea Nobilis. Population Medicine, 5(Supplement).
Waterman, P. G., & Grundon, M. F. (1983). Chemistry and chemical taxonomy of the Rutales.