An overview on the Taxonomy, Distribution, Production and Economic Importance of Cowpea (Vigna unguiculata L. Walp).

Main Article Content

Ezra K. Kirarei
Pixley K. Kipsumbai https://orcid.org/0000-0002-3119-2602
Pascaline Jeruto https://orcid.org/0000-0002-1294-2789
Ezekiel K. Kiprop https://orcid.org/0000-0001-5625-3283

Keywords

Cowpea, taxonomy, production, distribution, cultivation

Abstract

Vigna unguiculata L. Walp (cowpea) is a significant crop resistant to drought grown in arid and semi-arid regions globally. It is a source of nutrients for humans through the consumption of its leaves as a vegetable or the utilisation of the grains. Livestock farmers in sub-Saharan Africa use cowpea leaves as animal fodder because they are rich in proteins. The cowpeas are genetically varied, comprising cultivated and wild forms. During the process of domestication, cowpeas have undergone significant phenotypic alterations from the native progenitor, such as longer flowering times, decreased pod breaking, and larger organ size. In this review, an extensive and in-depth literature search on cowpea was done on relevant sources, and the search information regarding the taxonomy and nomenclature of cowpea, the origin and geographical distribution of cowpea, the cultivation and production of cowpea, and the importance of cowpea was noted. Cowpea has undergone extensive classification and taxonomy over the years so as to differentiate between wild and domesticated cultivars. There has been a general agreement that cowpeas belong to the botanical species Vigna unguiculata (L.) Walp., which formerly had more than twenty synonyms, including V. cylindrical, V. sinensis, V. catjang, Dolichos sinensis, and Dolichos unguilculata. There exists a great diversity in both wild and domesticated cultivars. Due to the great deal of variability in cowpea in Asia and Africa, its exact origin has been of great debate with no conclusive agreement. Cowpea cultivation is done in Asia, North America, South America, and sub-Saharan Africa, which accounts for approximately 95% of the land under cowpea globally. Cowpea production plays a significant role in nutrition, income generation, and food security, making it valuable for households and communities globally.

Abstract 730 | PDF Downloads 698

References

Abebe, B. K., & Alemayehu, M. T. (2022). A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. Journal of Agriculture and Food Research, 10, 100383.

AFA (2022). Agriculture and Food Authority. AFA Year Book of Statistics. Accessed 1 Lazaridi, E., & Bebeli, P. J. (2023). Cowpea constraints and breeding in Europe. Plants, 12(6), 1339.

Affrifah, N. S., Phillips, R. D., & Saalia, F. K. (2022). Cowpeas: Nutritional profile, processing methods and products—A review. Legume Science, 4(3), e131.

Akplo, T. M., Faye, A., Obour, A., Stewart, Z. P., Min, D., & Prasad, P. V. (2023). Dual‐purpose crops for grain and fodder to improve nutrition security in semi‐arid sub‐Saharan Africa: A review. Food and Energy Security, 12(5), e492.

Amole, T., Augustine, A., Balehegn, M., & Adesogoan, A. T. (2022). Livestock feed resources in the West African Sahel. Agronomy Journal, 114(1), 26-45.

Basweti, E., & Achieng, O. J. (2022). Cowpea Rust Disease Incidence and Severity on Growth and Yield of Selected Cowpea Genotypes under Different Cropping Systems in Western Kenya. Ajausud| African Journal of Agriculture and
Utilisation of Natural Resources for Sustainable Development, 1(1).

Baudoin J. P. and Maréchal R. (1985). Genetic diversity in Vigna. In: Singh S.R. and Rachie K.O. (eds), Cowpea research, production and utilization. John Wiley & Sons, Chichester, pp. 3–11.

Becker, J. N., Grozinger, J., Sarkar, A., Reinhold-Hurek, B., & Eschenbach, A. (2023). Effects of cowpea (Vigna unguiculata) inoculation on nodule development and rhizosphere carbon and nitrogen content under simulated drought. Plant and Soil, 1-19.

Biama, P. K., Faraj, A. K., Mutungi, C. M., Osuga, I. N., & Kuruma, R. W. (2020). Nutritional and technological characteristics of new cowpea (Vigna unguiculata) lines and varieties grown in eastern Kenya. Food and Nutrition Sciences, 11(5), 416-430.

Binacchi, F., Rusinamhodzi, L., & Cadisch, G. (2022). The potential of conservation agriculture to improve nitrogen fixation in cowpea under the semi-arid conditions of Kenya. Frontiers in Agronomy, 4, 988090. DOI: https://doi.org/10.3389/fagro.2022.988090

Bokelmann, W., Huyskens-Keil, S., Ferenczi, Z., & Stöber, S. (2022). The role of indigenous vegetables to improve food and nutrition security: experiences from the project HORTINLEA in Kenya (2014–2018). Frontiers in Sustainable Food Systems, 6, 806420.

Boukar, O., Abberton, M., Oyatomi, O., Togola, A., Tripathi, L., & Fatokun, C. (2020). Introgression breeding in cowpea [Vigna unguiculata (L.) Walp.]. Frontiers in Plant Science, 11, 567425.

Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M.L., Olufajo, O. and Fatokun, C. (2018). Cowpea (Vigna unguiculata): Genetics, Genomics and Breeding. Plant Breeding, 138, 415-424. DOI: https://doi.org/10.1111/pbr.12589

Boukar, O., Togola, A., Chamarthi, S., Belko, N., Ishikawa, H., Suzuki, K., & Fatokun, C. (2019). Cowpea [Vigna unguiculata (L.) Walp.] breeding. Advances in Plant Breeding Strategies: Legumes: Volume 7, 201-243.

Choudhary, V., Guha, P., Pau, G., Dhanaraj, R. K., & Mishra, S. (2023). Automatic classification of cowpea leaves using deep convolutional neural network. Smart Agricultural Technology, 4, 100209.

Diana, B. M., Patterson, S. P., Simon, M. M., & James, M. K. (2023). Effect of Intercropping Sonchus oleraceous with Maize and Cowpea on Biomass and Soil Conservation for Growth and Yield. Int. J. Plant Soil Sci, 35(10), 58-65. DOI: https://10.9734/IJPSS/2023/v35i102925

Ebong, U. U. (1970). A classification of cowpea varieties (Vigna sinensis, Endl.) in Nigeria into subspecies and groups. Nigerian agricultural journal, 7(1), 5-18.

FAO (2020). World Food and Agriculture - Statistical Yearbook 2020. Rome. Muindi, M. M., Muthini, M., Njeru, E. M., & Maingi, J. (2021). Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon, 7(4).

FAO. (2021). Food and Agricultural Organisation. Crop Production and Trade Data. http://www.fao.org/faostat/en/#data/QC (accessed March 13, 2024)

FAOSTAT, F. (2019). Food and Agriculture Organization of the United Nations-Statistic Division https://www. fao. org/faost at/en/# data. (Accessed, 13/3/24)

FAOSTAT, F. (2020). Food and agriculture data (2019). Available at: http://www.fao.org/faostat/en/#data/EP/visualize (Accessed March, 2024)

Faris D. G. (1963). Evidence for the West African origin of Vigna sinensis (L.) Savi, PhD, University of California, Davis.

Faye, A., Obour, A. K., Akplo, T. M., Stewart, Z. P., Min, D., Prasad, P. V., & Assefa, Y. (2024). Dual‐purpose cowpea grain and fodder yield response to variety, nitrogen–phosphorus–potassium fertilizer, and environment. Agrosystems, Geosciences & Environment, 7(1), e20459.

Gbedevi, K. M., Boukar, O., Ishikawa, H., Abe, A., Ongom, P. O., Unachukwu, N., ... & Fatokun, C. (2021). Genetic diversity and population structure of cowpea [Vigna unguiculata (L.) Walp.] germplasm collected from Togo based on DArT markers. Genes, 12(9), 1451.

Guimarães, J. B., Nunes, C., Pereira, G., Gomes, A., Nhantumbo, N., Cabrita, P., ... & Veloso, M. M. (2023). Genetic diversity and population structure of cowpea (Vigna unguiculata (L.) Walp.) landraces from portugal and mozambique. Plants, 12(4), 846.

Gumede, M. T., Gerrano, A. S., Amelework, A. B., & Modi, A. T. (2022). Analysis of genetic diversity and population structure of cowpea (Vigna unguiculata (L.) Walp) genotypes using Single Nucleotide Polymorphism markers. Plants, 11(24), 3480.

Herniter, I. A., Muñoz‐Amatriaín, M., & Close, T. J. (2020). Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata [L.] Walp.). Legume Science, 2(4), e57.

Horn, L., Nghituwamata, S. N., & Ueitele, I. (2022). Cowpea production challenges and contribution to livelihood in
Sub-Sahara region. Agricultural Sciences, 13, 25-32. DOI: https://doi.org/10.4236/as.2022.131003
Horticultural Crops Directorate (2016). Validated Report 2015–2016. Nairobi, Kenya

Huynh, B. L., Close, T. J., Roberts, P. A., Hu, Z., Wanamaker, S., Lucas, M. R., ... & Ehlers, J. D. (2013). Gene pools and the genetic architecture of domesticated cowpea. The plant genome, 6(3), plantgenome2013-03.

Kebede, E., & Bekeko, Z. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1769805.

Ketema, S., Tesfaye, B., Keneni, G., Amsalu Fenta, B., Assefa, E., Greliche, N., ... & Yao, N. (2020). DArTSeq SNP-based markers revealed high genetic diversity and structured population in Ethiopian cowpea [Vigna unguiculata (L.) Walp] germplasms. PloS one, 15(10), e0239122.

Kinyua, M. W., Kihara, J., Bekunda, M., Bolo, P., Mairura, F. S., Fischer, G., & Mucheru-Muna, M. W. (2023). Agronomic and economic performance of legume-legume and cereal-legume intercropping systems in Northern Tanzania. Agricultural systems, 205, 103589.DOI: https://doi.org/10.1016/j.agsy.2022.103589

Kirigia, D., Winkelmann, T., Kasili, R., & Mibus, H. (2018). Development stage, storage temperature and storage duration influence phytonutrient content in cowpea (Vigna unguiculata L. Walp.). Heliyon, 4(6).

Lazaridi, E., & Bebeli, P. J. (2023). Cowpea constraints and breeding in Europe. Plants, 12(6), 1339.

Lazaridi, E., & Bebeli, P. J. (2023). Evaluation of Cowpea Landraces under a Mediterranean Climate. Plants, 12(10), 1947.

Lonardi, S., Muñoz‐Amatriaín, M., Liang, Q., Shu, S., Wanamaker, S. I., Lo, S., ... & Close, T. J. (2019). The genome of cowpea (Vigna unguiculata [L.] Walp.). The Plant Journal, 98(5), 767-782.

Lush, W. M., & Evans, L. T. (1981). The domestication and improvement of cowpeas (Vigna unguiculata (L.) W alp.). Euphytica, 30, 579-587.

Maréchal, R. (1978). Etude taxonomique d'un groupe complexe d'espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l'analyse informatique. Boissiera, 28, 1-273.

Mekonnen, T. W., Gerrano, A. S., Mbuma, N. W., & Labuschagne, M. T. (2022). Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: progress, opportunities, and challenges. Plants, 11(12), 1583.

Mentari, B. P., Purnamawati, H., & Sulistyono, E. (2023). Growth and yield responses of two cowpea (Vigna unguiculata L.) varieties on different irrigation levels. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 51(3), 402-413.

Mogale, E. T., Ayisi, K. K., Munjonji, L., & Kifle, Y. G. (2023). Biological nitrogen fixation of cowpea in a No-till intercrop under contrasting rainfed agro-ecological environments. Sustainability, 15(3), 2244.

Muindi, M. M., Muthini, M., Njeru, E. M., & Maingi, J. (2021). Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon, 7(4).

Munyao, R. K. (2023). Assessment of Diversity among Cowpea Accessions from Semi-Arid Areas of Kenya (Doctoral dissertation, JKUAT-COANRE).

Mwenda, K. I., Munyiri, S. W., & Ndukhu, H. O. (2023). Effect of Maize-Cowpea Cropping Patterns On Soil Moisture Conservation in Meru and Tharaka Nithi Counties. East African Agricultural and Forestry Journal, 87(1 & 2), 10-10.

Narayana, M., & Angamuthu, M. (2021). Cowpea. In The Beans and the Peas (pp. 241-272). Woodhead Publishing.

Ng N. Q. (1995). Cowpea, Vigna unguiculata (Leguminosae-Papilionoideae). In: Smartt J. and Simmonds N.W. (eds),
Evolution of Crop Plants ed. 2. Longmans, New York, pp. 326–332.
Ngalamu, T., Odra, J., & Tongun, N. (2015). Cowpea production handbook. IFS/AGRA.

Nunes, C., Moreira, R., Pais, I., Semedo, J., Simões, F., Veloso, M. M., & Scotti-Campos, P. (2022). Cowpea physiological responses to terminal drought—Comparison between four landraces and a commercial variety. Plants, 11(5), 593.

Nwagboso, C., Andam, K. S., Amare, M., Bamiwuye, T., & Fasoranti, A. (2024). The economic importance of cowpea in Nigeria trends and Implications for achieving agri-food system transformation.

Odundo, S. N. (2023). Effect of Phosphorus Fertilizer Application on Yields of Cowpea (Vigna unguiculata) Varieties across Sites of Differing Soil Fertility in western Kenya.

Ogbole, O. O., Akin-Ajani, O. D., Ajala, T. O., Ogunniyi, Q. A., Fettke, J., & Odeku, O. A. (2023). Nutritional and pharmacological potentials of orphan legumes: Subfamily faboideae. Heliyon.

Oliveira, A., Jean, A., Damasceno-Silva, K. J., Moreira-Araújo, R. S. D. R., Franco, L. J., & Rocha, M. D. M. (2023). Proximate composition, minerals, tannins, phytates and cooking quality of commercial cowpea cultivars. Revista
Caatinga, 36, 702-710.

Omomowo, O. I., & Babalola, O. O. (2021). Constraints and prospects of improving cowpea productivity to ensure food, nutritional security and environmental sustainability. Frontiers in Plant Science, 12, 751731.

Omundi, J. M., Mushimiyimana, D., & Mugambi, M. (2020). Effects of intercropping cowpeas with maize and phosphorous levels on growth and yields of cowpeas in Meru County, Kenya. http://repository.kemu.ac.ke/handle/123456789/949

Ondieki, D. K., Nyaboga, E. N., Wagacha, J. M., and Mwaura, F. B. (2017). Morphological and genetic diversity of Rhizobia nodulating cowpea (Vigna unguiculata L.) from agricultural soils of lower eastern Kenya. Int. J. Microbiol. 2017:8684921. doi: 10.1155/2017/8684921

Owade, J. O., Abong’, G. O., Okoth, M. W., & Mwang’ombe, A. W. (2020). Trends and constraints in the production and utilization of cowpea leaves in the arid and semi-arid lands of Kenya. Open Agriculture, 5(1), 325-334..

Owade, J. O., Abong’, G., Okoth, M., & Mwang’ombe, A. W. (2020). A review of the contribution of cowpea leaves to
food and nutrition security in East Africa. Food Science & Nutrition, 8(1), 36-47.

Padulosi S. (1993). Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea (Vigna unguiculata (L.) Walpers.), PhD, Université catholique, Louvain La Neuve, Belgium

Padulosi, S., & Ng, N. Q. (1993). A useful and unexploited herb, Vigna marina (Leguminosae-Papilionoideae) and the taxonomic revision of its genetic diversity. Bulletin du Jardin botanique national de Belgique/Bulletin van de Nationale Plantentuin van Belgie, 119-126.

Pan, L., Liu, M., Kang, Y., Mei, X., Hu, G., Bao, C., ... & Wang, N. (2023). Comprehensive genomic analyses of Vigna unguiculata provide insights into population differentiation and the genetic basis of key agricultural traits. Plant
Biotechnology Journal, 21(7), 1426-1439.

Panchta, R., Arya, R. K., Vu, N. N., & Behl, R. K. (2021). Genetic divergence in cowpea (Vigna unguiculata L. Walp)-an Overview. Ekin Journal of Crop Breeding and Genetics, 7(1), 1-20.

Panella L., Kami J. and Gepts P. (1993). Vignin diversity in wild and cultivated taxa of Vigna unguiculata (L.) Walp. (Fabaceae). Econ. Bot. 47: 371–386.

Pasquet, R. S. (1998). Morphological study of cultivated cowpea Vigna unguiculata (L.) Walp. Importance of ovule number and definition of cv gr Melanophthalmus. Agronomie, 18(1), 61-70.

Pasquet, R. S. (1993). Variation at isozyme loci in wild Vigna unguiculata (Fabaceae, Phaseoleae). Plant systematics and evolution, 186, 157-173.

Pasquet, R. S., Feleke, Y., & Gepts, P. (2021). Cowpea [Vigna unguiculata (L.) Walp.] maternal lineages, chloroplast captures, and wild cowpea evolution. Genetic Resources and Crop Evolution, 68, 2799-2812. DOI: https://doi.org/10.1007/s10722-021-01155-y

Pienaar, B. J., & Van Wyk, A. E. (1992). The Vigna unguiculata complex (Fabaceae) in southern Africa. South African Journal of Botany, 58(6), 414-429.

Pioltelli, E., Sartirana, C., Copetta, A., Brioschi, M., Labra, M., & Guzzetti, L. (2023). Vigna unguiculata L. Walp. Leaves as a Source of Phytochemicals of Dietary Interest: Optimization of Ultrasound‐Assisted Extraction and Assessment of
Traditional Consumer Habits. Chemistry & Biodiversity, 20(11), e202300797. DOI: https://doi.org/10.1080/1828051X.2023.2274508

Piper C. V. (1913). The wild prototype of cowpea. USDA Bureau of Plant Industry. Circular No 124. Miscellaneous papers. Washing-ton, Government Printing Office: 29–32.

Quenum, A. J., Pasquet, R. S., Bodian, A., Fonceka, D., Djiboune, Y. R., Cisse, N., ... & Diouf, D. (2024). Molecular characterization of cowpea [Vigna unguiculata (L.) Walp.] subspecies with SSR markers. Genetic Resources and Crop Evolution, 71(5), 1785-1793. DOI: https://doi.org/10.1007/s10722-023-01738-x

Samireddypalle, A., Boukar, O., Grings, E., Fatokun, C. A., Kodukula, P., Devulapalli, R., ... & Blümmel, M. (2017). Cowpea and groundnut haulms fodder trading and its lessons for multidimensional cowpea improvement for mixed crop livestock systems in West Africa. Frontiers in plant science, 8, 224896.

Singh, A., Mamo, T., Singh, A., & Mahama, A. A. (2023). Cowpea breeding. Crop Improvement.
Singh, B. (Ed.). (2020). Cowpea: the food legume of the 21st century (Vol. 164). John Wiley & Sons.

Singh, B. B. (2005). Cowpea [Vigna unguiculata (L.) Walp.]. Genetic resources, chromosome engineering and crop improvement, 1, 117-162.

Sobda, G., Mewounko, A., Sakati, P. D., & Ndaodeme, K. (2018). Farmers' cowpea production constraints and varietal preferences in the sudano-sahelian zone of Cameroon. International Journal of Innovation and Applied Studies, 24(3), 968-977.

Steele W. M. (1976). Cowpeas, Vigna unguiculata (Leguminosaeguiculata Papillionatae). In: Simmonds N.W. (ed.), Evolution of Crop Plants. Longman, London, pp. 183–185.

Thiombiano, C., Lado, A., Coulibaly, S., Tukur, T., Bello, T., Serme, I., ... & Hussaini, M. A. (2023). Assessment of the Effects of Drought Stress at Seedling and Flowering Stages of Cowpea Development on Yield and Yield Attributes. Journal of Agriculture and Environmental Sciences, 12(2), 68-80.

Tolba, S. A., Amer, S. A., Gouda, A., Osman, A., Sherief, W. R., Ahmed, A. I., ... & Roushdy, E. M. (2023). Potential use of cowpea protein hydrolysate as a dietary supplement in broiler chickens: effects on growth, intestinal morphology, muscle lipid profile, and immune status. Italian Journal of Animal Science, 22(1), 1204-1218. DOI: https://doi.org/10.1002/cbdv.202300797

Tolefack, C. K., Tabi, O. T., Andoh, M. A., & Neba, N. N. (2023). Evaluating the Effect of Different Planting Dates on Growth and Yield Performance of Cowpea [Vigna unguiculata (L.)] Walp in Buea, Cameroon. International Journal of Plant & Soil Science, 35(21), 430-438.

USDA. (2021). Food Data Central. https://fdc.nal.usda.gov/ (accessed March 13, 2024)

Vaillancourt R. E. and Weeden N. F. (1992). Chloroplast DNA poly-morphism suggests a Nigerian center of domestication for the cowpea, Vigna unguiculata (Leguminosae). Am. J. Bot. 79: 1194–1199

Verheyen, J., Dhondt, S., Abbeloos, R., Eeckhout, J., Janssens, S., Leyns, F., ... & Vandelook, F. (2024). High-throughput phenotyping reveals multiple drought responses of wild and cultivated Phaseolinae beans. bioRxiv, 2024-02.

Wanjiku, G. J., Kingori, G. G., & Kirimi, K. J. (2023). Effect of Harvesting Stage on Cowpea Leaf Nutrient Composition. Plant, 11(2), 50-59.

Wekesa, C., Jalloh, A. A., Muoma, J. O., Korir, H., Omenge, K. M., Maingi, J. M., ... & Oelmüller, R. (2022). Distribution,
characterization and the commercialization of elite rhizobia strains in Africa. International journal of molecular sciences, 23(12), 6599.

Xiong, H., Shi, A., Mou, B., Qin, J., Motes, D., Lu, W., ... & Wu, D. (2016). Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PloS one, 11(8), e0160941.

Zhukovashii, P. M. (1962). Cultivated plants and their wild relatives, Common wealth Bureau of Plant Breeding. UK: Cambridge.

Zuluaga, D. L., Lioi, L., Delvento, C., Pavan, S., & Sonnante, G. (2021). Genotyping-by-sequencing in Vigna unguiculata landraces and its utility for assessing taxonomic relationships. Plants, 10(3), 509. DOI: https://doi.org/10.3390/plants10030509