Effects of Adsorbent Dosage and Particle Size on Fluoride Removal Using Calcium-Spiked Moringa oleifera Seed Powder

Main Article Content

Geoffrey Chavaregi https://orcid.org/0009-0007-3549-0029
John Kituyi Lusweti https://orcid.org/0009-0003-7247-992X
Pius Keronei Kipkemboi https://orcid.org/0000-0002-5556-5223

Keywords

Fluoride removal, moringa oleifera, calcium spiking, biosorption, adsorption efficiency, defluoridation, drinking water safety, Kenya

Abstract

Access to safe drinking water remains a major challenge in fluoride-endemic regions, where excessive fluoride concentrations can lead to dental and skeletal fluorosis. This study evaluated the effects of adsorbent dosage, particle size, and particle size classification (mesh size) on the fluoride removal performance of Moringa oleifera seed powder (MOSP) in both calcium-spiked and non-spiked forms. A three-factor factorial batch adsorption experiment was conducted using initial fluoride concentration of 1ppm, dosages of 0.25–2.0 g/100 mL, particle sizes of <250 µm, 250–500 µm, and >500 µm, and mesh classifications of 20 (850 μm), 40 (425 µm), and 60(250 μm). Response variables included fluoride removal efficiency, residual fluoride concentration, and adsorption capacity (qe), measured using a fluoride ion-selective electrode. ANOVA and linear regression were applied to evaluate the dose and size response relationships. Results showed that calcium-spiked MOSP consistently outperformed non-spiked MOSP across all parameters. Fluoride removal efficiency increased with dosage, reaching 88.95% for spiked and 70.34% for non-spiked MOSP at 2.0 g. Finer particle sizes and smaller mesh fractions significantly enhanced removal efficiency and reduced residual fluoride levels, with spiked MOSP at ≤250 µm achieving 89.80% removal and residual fluoride below WHO guidelines. Regression analysis confirmed strong inverse relationships between particle size/mesh size and fluoride removal performance, and positive correlations with dosage. The improved performance of calcium-spiked MOSP is attributed to increased surface-active Ca²⁺ sites enabling precipitation of CaF₂ and enhanced adsorption via electrostatic attraction and ion exchange. These findings indicate that calcium-spiked MOSP, optimally prepared at fine particle size and moderate dosage, is a viable, locally sourced defluoridation medium suitable for rural water treatment systems.

Abstract 47 | PDF Downloads 31

References

APHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington, DC: American Public Health Association

Benettayeb, A., Usman, M., Tinashe, C. C., Adam, T., & Haddou, B. (2022). A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment. Environmental Science and Pollution Research, 29(32), 48185-48209. https://doi.org/10.1007/s11356-022-19938-w

Bhat, S. V., Melo, J. S., Chaugule, B. B., & D'souza, S. F. (2008). Biosorption characteristics of uranium (VI) from aqueous medium onto Catenella repens, a red alga. Journal of Hazardous materials, 158(2-3), 628-635. https://doi.org/10.1016/j.jhazmat.2008.02.042

Bhatnagar, A., Kumar, E., & Sillanpää, M. (2011). Fluoride removal from water by adsorption—a review. Chemical engineering journal, 171(3), 811-840. https://doi.org/10.1016/j.cej.2011.05.028

Budyanto, S., Kuo, Y. L., & Liu, J. C. (2015). Adsorption and precipitation of fluoride on calcite nanoparticles: A spectroscopic study. Separation and Purification Technology, 150, 325-331. https://doi.org/10.1016/j.seppur.2015.07.016

Choubisa, S. L. (2024). A brief review of fluoride-induced bone disease skeletal fluorosis in humans and its prevention. Journal of Pharmaceutics and Pharmacology Research, 7(8), 1-6. https://www.researchgate.net/profile/
Shanti-Choubisa/publication/382364888_A_brief_review_of_fluoride-induced_bone_disease_skeletal_fluorosis_in_humans_and_its_prevention/links/6699f00102e9686cd10dc4c7/A-brief-review-of-fluoride-induced-bone-disease-skeletal-fluorosis-in-humans-and-its-prevention.pdf

Fina, B. L., & Rigalli, A. (2015). Effect of fluoride on bone metabolism, structure and remodeling. Royal Society of Chemistry. UK https://doi.org/10.1039/9781782628507-00200

Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10. https://doi.org/10.1016/j.cej.2009.09.013

Ghosh, A., Mukherjee, K., Ghosh, S. K., & Saha, B. (2013). Sources and toxicity of fluoride in the environment. Research on Chemical Intermediates, 39(7), 2881-2915. https://doi.org/10.1007/s11164-012-0841-1

Gràcia Lanas, S. I. (2017). Fluoride and metal ions removal from water by adsorption on nanostructured materials. https://ddd.uab.cat/record/180089

Habuda-Stanić, M., Ergović Ravančić, M., & Flanagan, A. (2014). A review on adsorption of fluoride from aqueous solution. Materials, 7(9), 6317-6366. https://doi.org/10.3390/ma7096317

Hart, A., Porbeni, D. W., Omonmhenle, S., & Peretomode, E. (2023). Waste bone char-derived adsorbents: characteristics, adsorption mechanism and model approach. Environmental Technology Reviews, 12(1), 175-204. https://doi.org/10.1080/21622515.2023.2197128

Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.

Holland, C., Ryden, P., Edwards, C. H., & Grundy, M. M. L. (2020). Plant cell walls: Impact on nutrient bioaccessibility and digestibility. Foods, 9(2), 201. https://doi.org/10.3390/foods9020201

Joshi, M., Bhatt, D., & Srivastava, A. (2023). Enhanced adsorption efficiency through biochar modification: a comprehensive review. Industrial & Engineering Chemistry Research, 62(35), 13748-13761. https://pubs.acs.org/doi/abs/10.1021/acs.iecr.3c02368

Kabir, H., Gupta, A. K., & Tripathy, S. (2020). Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology, 50(11), 1116-1193. https://doi.org/10.1080/10643389.2019.1647028

Kamruzzaman, M., Khan, M. S. U., Ritu, S. A., Khanom, S., Hossain, M., Islam, M. R., & Uddin, S. (2025). Diving Deep: Exploring Fluoride in Groundwater—Causes, Implications, and Mitigation. In Fluorides in Drinking Water: Source, Issue, and Mitigation Strategies (pp. 189-221). Cham: Springer Nature Switzerland. https://
doi.org/10.1007/978-3-031-77247-4_8

Kyriakopoulos, G. L., Tsimnadis, K., Sebos, I., & Charabi, Y. (2024). Investigating the Effect of Pore Size Distribution on the Sorption Types and the Adsorption-Deformation Characteristics of Porous Continua: The Case of Adsorption on Carbonaceous Materials. Crystals, 14(8), 742. https://doi.org/10.3390/cryst14080742

Lai, P., Moulton, K., & Krevor, S. (2015). Pore-scale heterogeneity in the mineral distribution and reactive surface area of porous rocks. Chemical Geology, 411, 260-273. https://doi.org/10.1016/j.chemgeo.2015.07.010

Li, G., Lv, L., Fan, H., Ma, J., Li, Y., Wan, Y., & Zhao, X. S. (2010). Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase. Journal of colloid and interface science, 348(2), 342-347. https://doi.org/10.1016/j.jcis.2010.04.045

Medellin-Castillo, N. A., Leyva-Ramos, R., Ocampo-Perez, R., Garcia de la Cruz, R. F., Aragon-Pina, A., Martinez-Rosales, J. M., ... & Fuentes-Rubio, L. (2007). Adsorption of fluoride from water solution on bone char. Industrial & Engineering Chemistry Research, 46(26), 9205-9212. https://pubs.acs.org/doi/abs/10.1021/ie070023n

Mohammadpour, M., Babazadeh, H., Afrous, A., & Pazira, E. (2021). Rice husk and activated carbon-silica as potential bioadsorbents for wastewater purification. Caspian Journal of Environmental Sciences, 19(4), 661-672. https://journals.guilan.ac.ir/article_5139_79f05d305566c2fd05847ac15990b828.pdf

Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons. https://books.google.co.ke/books?hl=en&lr=&id=Py7bDgAAQBAJ&oi=fnd&pg=PA1&dq=Montgomery,+D.+C.+(2017).+Design+and+Analysis+of+Experiments+(9th+ed.).+Hoboken,+NJ:+John+Wiley+%26+Sons.&ots=X8u6rZKS4c&sig=Xr2DGuzhC1W_pgn2x0DGcDFz4gk&redir_esc=y#v=onepage&q&f=false

Ndabigengesere, A., Narasiah, K. S., & Talbot, B. G. (1995). Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water research, 29(2), 703-710. https://doi.org/10.1016/0043-1354(94)00161-Y

Novita, E., Wahyuningsih, S., Pradana, H. A., & Marsut, W. D. (2019, November). Moringa seeds (Moringa olifiera L.) application as natural coagulant in coffee wastewater treatment. In IOP Conference Series: Earth and Environmental Science (Vol. 347, No. 1, p. 012019). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/347/1/012019/meta

Oladele, J. O., Wang, M., & Phillips, T. D. (2024). Animal-Based Biosorbents. In Biosorbents (pp. 79-95). CRC Press.

Onipe, T., Edokpayi, J. N., & Odiyo, J. O. (2020). A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. Journal of Environmental Science and Health, Part A, 55(9), 1078-1093. https://doi.org/10.1080/10934529.2020.1770516

Patel, H. (2022). Comparison of batch and fixed bed column adsorption: a critical review. International Journal of Environmental Science and Technology, 19(10), 10409-10426. https://doi.org/10.1007/s13762-021-03492-y

Pattanaik, A., Adak, T., Munda, S., Khanam, R., Bhattacharyya, P., & Nayak, A. K. (2025). Calcium carbonate-enriched rice straw biochar can reclaim phosphate along with glyphosate, arsenic, cadmium, and lead contamination from wastewater. Biomass Conversion and Biorefinery, 1-16. https://doi.org/10.1007/s13399-025-06762-8

Pirard, S. L., Heinrichs, B., Heyen, G., & Pirard, J. P. (2008). Optimization of experimental procedure and statistical data treatment for kinetics of ethylene hydrogenation on a copper-magnesia catalyst. Chemical Engineering Journal, 138(1-3), 367-378. https://doi.org/10.1016/j.cej.2007.06.009

Rasool, A., Farooqi, A., Xiao, T., Ali, W., Noor, S., Abiola, O., ... & Nasim, W. (2018). A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environmental geochemistry and health, 40(4), 1265-1281. https://doi.org/10.1007/s10653-017-0054-z

Rusiniak, P., Sekuła, K., Sracek, O., & Stopa, P. (2021). Fluoride ions in groundwater of the Turkana county, Kenya, east Africa. Acta Geochimica, 40(6), 945-960. https://doi.org/10.1007/s11631-021-00481-3

Shah, A., Manning, G., Zakharova, J., Arjunan, A., Batool, M., & Hawkins, A. J. (2024). Particle size effect of Moringa oleifera Lam. seeds on the turbidity removal and antibacterial activity for drinking water treatment. Environmental Chemistry and Ecotoxicology, 6, 370-379. https://doi.org/10.1016/j.enceco.2024.07.008

Shankar, S., Joshi, S., & Srivastava, R. K. (2023). A review on heavy metal biosorption utilizing modified chitosan. Environmental Monitoring and Assessment, 195(11), 1350. https://doi.org/10.1007/s10661-023-11963-7

Shin, E. (2020). Fluoride removal from brine with ion exchange resin (Doctoral dissertation, University of British Columbia). https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0392951

Stack, A. G., Fernandez-Martinez, A., Allard, L. F., Bañuelos, J. L., Rother, G., Anovitz, L. M., ... & Waychunas, G. A. (2014). Pore-size-dependent calcium carbonate precipitation controlled by surface chemistry. Environmental science & technology, 48(11), 6177-6183. https://pubs.acs.org/doi/abs/10.1021/es405574a

Trevisanello, E., Ruess, R., Conforto, G., Richter, F. H., & Janek, J. (2021). Polycrystalline and single crystalline NCM cathode materials—quantifying particle cracking, active surface area, and lithium diffusion. Advanced Energy Materials, 11(18), 2003400. https://doi.org/10.1002/aenm.202003400

Wamalwa Wambu, E., Frau, F., Machunda, R., Pasape, L., S Barasa, S., & Ghiglieri, G. (2022). Water defluoridation methods applied in rural areas over the world. IntechOpen.

Worch, E. (2021). Adsorption technology in water treatment: fundamentals, processes, and modeling. Walter de Gruyter GmbH & Co KG. https://doi.org/10.1515/9783110240238

Zhang, M., Chen, H., Liang, C., & Duan, L. (2025). Behaviors of bio-modified calcium-based sorbents for simultaneous CO2/NO removal: Correlation of the characteristics of biomass, modified Ca-sorbent and reactivity. Journal of Environmental Management, 373, 123958. https://doi.org/10.1016/j.jenvman.2024.123958

Zhang, Y., Zhou, L., Li, D., Xue, N., Xu, X., & Li, J. (2003). Oriented nano-structured hydroxyapatite from the template. Chemical Physics Letters, 376(3-4), 493-497. https://doi.org/10.1016/S0009-2614(03)01038-8