Assessing Status of Agroecological Biodiversity in Smallholder farming: Evidence from FAO TAPE Tool Localization in Busia County, Kenya

Main Article Content

Suzzette Kerubo Nyaguti https://orcid.org/0009-0008-1714-6408
Abigael Otinga https://orcid.org/0000-0003-1624-2648
Ruth Njoroge https://orcid.org/0000-0001-6102-5795
Lilian Bisase Ongeri https://orcid.org/0009-0006-9316-6502
Vincent Ambale https://orcid.org/0009-0007-8290-6787

Keywords

Agroecological biodiversity, agroecology, Busia County, crop diversity, FAO TAPE tool, , livestock diversity

Abstract

Agroecological biodiversity is the variety and variability of above ground organisms, that is crops, livestock, trees, and activities considered under agricultural systems. This study investigated the extent of above ground agroecological biodiversity among small-scale farmers in Busia County. Agroecological diversity (above ground) was measured using four indicators of the FAO's Tool for Agroecology Performance Evaluation-TAPE: crop, livestock, tree, and activity diversity. Administrative wards were purposively selected where a sample size of 210 was sourced. Households were randomly selected, top 35 households, within those administrative wards. For administrative wards with less than 35 households, snowballing was conducted to reach the required number of households. Snowballing was also conducted to households that were unavailable and to those who did not give consent. Data was collected through structured questionnaires and administered to respondents by trained enumerators. The results revealed that the agroecological biodiversity scores recorded: 40.5%, 31.25%, 45.5%, and 41.75%, for crops, livestock, trees, and activities, respectively, with an overall score of 39.75%. This interprets to unsustainable extent of practice, reflecting missed opportunities to harness agroecological biodiversity. Farmer education and technical extension by up to date standardized trained officers on agroecological biodiversity can be strengthened through mass media, agricultural shows, and farmer school centres. Additionally, promoting practical guidance on integrating locally appropriate species and practices can help unlock the full extent and adoption of agroecological biodiversity.

Abstract 130 | PDF Downloads 51

References

Altieri, M. A. (1999). Applying agroecology to enhance the productivity of peasant farming systems in Latin America. Environment, Development and Sustainability, 1, 197-217. https://doi.org/10.1023/A:1010078923050

Altieri, M. A., & Nicholls, C. I. (2018). Urban agroecology: designing biodiverse, productive and resilient city farms. Agro Sur, 46(2), 49-60. https://doi.org/10.4206/agrosur.2018.v46n2-07

Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890. https://doi.org/10.1007/s13593-015-0285-2

Amare, M., & Balana, B. (2023). Climate change, income sources, crop mix, and input use decisions: Evidence from Nigeria. Ecological Economics, 211, 107892. https://doi.org/10.1016/j.ecolecon.2023.107892

Anthonioz, A. (2021). The suitability of the “Tool for Agroecological Performance Evaluation (TAPE)” in a European context (Doctoral dissertation, Norwegian University of Life Sciences & ISARA).

Bellon, M & Kotu, Bekele H & Azzarri, C & Caracciolo, Francesco. (2020). To diversify or not to diversify, that is the question. Pursuing agricultural development for smallholder farmers in marginal areas of Ghana. World Development. 125. https://doi.org/10.1016/j.worlddev.2019.104682

Bett, H. K., Musyoka, M. P., Peters, K. J., & Bokelmann, W. (2012). Demand for Meat in the Rural and Urban Areas of Kenya: A Focus on the Indigenous Chicken—Bett—2012—Economics Research International—Wiley Online Library. https://doi.org/10.1155/2012/401472

Bicksler, A. J., Mottet, A., Lucantoni, D., & De Rosa, F. (2021). Fao'S Tool for Agroecology Performance Evaluation (Tape): A Multi-Dimensional Assessment Tool For The Performance Of Agroecology For Better Decision Making In The Transition To Sustainable Food Systems.

Bilotto, F., Harrison, M. T., Vibart, R., Mackay, A., Christie-Whitehead, K. M., Ferreira, C. S., ... & Chang, J. (2024). Towards resilient, inclusive, sustainable livestock farming systems. Trends in Food Science & Technology, 104668. https://doi.org/10.1016/j.tifs.2024.104668

Chamberlin, J., Jayne, T. S., & Headey, D. (2014). Scarcity amidst abundance? Reassessing the potential for cropland expansion in Africa. Food Policy, 48, 51-65. https://doi.org/10.1016/j.foodpol.2014.05.002

Eder, M., Martin, O. M., Oswal, N., Sedlackova, L., Moutinho, C., Del Carmen-Fabregat, A., ... & Stroustrup, N. (2024). Systematic mapping of organism-scale gene-regulatory networks in aging using population asynchrony. Cell, 187(15), 3919-3935. https://doi.org/10.1016/j.cell.2024.05.050

Fan, S., Rue, C. (2020). The Role of Smallholder Farms in a Changing World. In: Gomez y Paloma, S., Riesgo, L., Louhichi, K. (eds) The Role of Smallholder Farms in Food and Nutrition Security. Springer, Cham. https://
doi.org/10.1007/978-3-030-42148-9_2

FAO (2021a). Land Use. http://www.fao.org/faostat/ en/#data/RL

FAO (2021b). Overview | Agroecology Knowledge Hub | Food and Agriculture Organization of the United Nations. http://www.fao.org/agroecology/overview/en/

FAO (2025). Assessing agroecological transitions in Kenya with the Tool for Agroecology Performance Evaluation (TAPE). https://openknowledge.fao.org/handle/20.500.14283/cd4272en

FAO 2019. TAPE Tool for Agroecology Performance Evaluation 2019 – Process of development and guidelines for application. Test version. Rome FAO TAPE Tool Test Version, 2019

Fisher, A.A., Laing, J.E., Stoeckel, J.E. and Townsend, J.W. (1998) Handbook for Family Planning Operations Research Design. Population Council, New York.

Fujimoto, T., & Suzuki, A. (2025). Different strategies of crop diversification between poor and non-poor farmers: Concepts and evidence from Tanzania. Ecological Economics, 227, 108369. https://doi.org/10.1016/j.ecolecon.2024.108369

Garrity, D. (2004). Agroforestry and the achievement of the Millennium Development Goals | Agroforestry Systems. https://doi.org/10.1023/B:AGFO.0000028986.37502.7c

Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., ... & Bayala, J. (2010). Evergreen Agriculture: a robust approach to sustainable food security in Africa. Food security, 2, 197-214. https://doi.org/10.1007/s12571-010-0070-7

Geck, M., Adeyemi, C., Adoyo, B., Alpuerto, J., Arinloye, A. A., Ateku, D., ... & Sinclair, F. (2024). Measuring Agroecology and its Performance (MAP). Key findings from applying the FAO Tool for Agroecology Performance Evaluation (TAPE) in Benin, Ethiopia, Kenya, and Madagascar in the context of the Global Programme Soil Protection and Rehabilitation
for Food Security (ProSoil). https://doi.org/10.17528/cifor-icraf/009298

Giller, Ken & Hijbeek, Renske & Andersson, Jens & Sumberg, James. (2021). Regenerative Agriculture: An agronomic perspective. Outlook on Agriculture. 50. https://doi.org/10.1177/0030727021998063

Gliessman, S. (2015). Agroecology: A growing field. Agroecology and Sustainable Food Systems, 39(1), 1-2. https://doi.org/10.1080/21683565.2014.965869

IPCC, 2022: Climate Change (2022): Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844

Isbell, C., Tobin, D., Reynolds, T. (2021). Motivations for maintaining crop diversity: Evidence from Vermont's seed systems, Ecological Economics, Volume 189, https://doi.org/10.1016/j.ecolecon.2021.107138

Jayne, T. S., Chamberlin, J., Traub, L., Sitko, N., Muyanga, M., Yeboah, F. K., ... & Kachule, R. (2016). Africa's changing farm size distribution patterns: the rise of medium‐scale farms. Agricultural Economics, 47(S1), 197-214. Africa's Changing Farm Size Distribution Patterns: The Rise of Medium-Scale Farms

Kabubo-Mariara, J., Linderhof, V., Kruseman, G., Atieno, R., & Mwabu, G. (2009). Household Welfare, Investment in Soil and Water Conservation and Tenure Security: Evidence from Kenya (SSRN Scholarly Paper 1527197). Social Science Research Network. https://doi.org/10.2139/ssrn.1527197. 141-161). Cham: Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-63430-7_7

Keprate, A., Bhardwaj, D. R., Sharma, P., Verma, K., Abbas, G., Sharma, V., ... & Janju, S. (2024). Climate resilient agroforestry systems for sustainable land use and livelihood. In Transforming Agricultural Management for a Sustainable Future: Climate Change and Machine Learning Perspectives (pp

KNBS (2022). Statistical Abstract. https://www.knbs.or.ke/reports/2022-statistical-abstract/

Kronberg, S. L., Provenza, F. D., Van Vliet, S., & Young, S. N. (2021). Closing nutrient cycles for animal production–Current and future agroecological and socio-economic issues. Animal, 15, 100285. https://doi.org/10.1016/j.animal.2021.100285

Labeyrie, V., Renard, D., Aumeeruddy-Thomas, Y., Benyei, P., Caillon, S., Calvet-Mir, L., Stéphanie M. et al., (2021) The role of crop diversity in climate change adaptation: insights from local observations to inform decision making in agriculture, Current Opinion in Environmental Sustainability, https://doi.org/10.1016/j.cosust.2021.01.006

Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875-5895. https://doi.org/10.3390/su7055875

Li, Q., Marshall, J., Rye, C. D., Romanou, A., Rind, D., & Kelley, M. (2023). Global climate impacts of Greenland and Antarctic meltwater: A comparative study. Journal of Climate, 36(11), 3571-3590. https://doi.org/10.1175/JCLI-D-22-0433.1

Lowder, S.K., Sánchez, M.V., & Bertini, R. (2019). Farms, family farms, farmland distribution and farm labour: What do we know today? FAO Agricultural Development Economics Working Paper 19-08. Rome, FAO. https://openknowledge.fao.org/handle/20.500.14283/ca7036en

Mango, Makate, C., Tamene, L., Mponella, P., & Ndengu, G. (2018). Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa. https://doi.org/10.3390/land7020049

Mbow, C., Smith, P., Skole, D., Duguma, L., & Bustamante, M. (2014). Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current opinion in Environmental sustainability, 6, 8-14. https://doi.org/10.1016/j.cosust.2013.09.002

Mottet, A., & Tempio, G. (2017). Global poultry production: current state and future outlook and challenges. World's poultry science journal, 73(2), 245-256. https://doi.org/10.1017/S0043933917000071

Mottet, A., Bicksler, A., Lucantoni, D., De Rosa, F., Scherf, B., Scopel, E., ... & Tittonell, P. (2020). Assessing transitions to
sustainable agricultural and food systems: a tool for agroecology performance evaluation (TAPE). Frontiers in Sustainable Food Systems, 4, 579154. https://doi.org/10.3389/fsufs.2020.579154

Mupangwa, W., Nyagumbo, I., Liben, Chipindu, L, P. Craufurd, Mkuhlani, S (2021). Maize yields from rotation and intercropping systems with different legumes under conservation agriculture in contrasting agro-ecologies, Agriculture, Ecosystems & Environment, Volume 306. https://doi.org/10.1016/j.agee.2020.107170.

Musafiri, C. M., Macharia, J M., Kiboi, M N., Ng’etich O. K., Shisanya, C, A. (2020). Soil greenhouse gas fluxes from maize cropping system under different soil fertility management technologies in Kenya. https://doi.org/10.1016/j.agee.2020.107064

Namirembe, S., Mhango, W., Njoroge, R., Tchuwa, F., Wellard, K., & Coe, R. (2022). Grounding a global tool—Principles and practice for agroecological assessments inspired by TAPE. Elem Sci Anth, 10(1), 00022. https://doi.org/10.1525/elementa.2022.00022

Niamir-Fuller, M. (2016). Towards sustainability in the extensive and intensive livestock sectors. Revue scientifique et technique (International Office of Epizootics), 35(2), 371-387. https://doi.org/10.20506/rst.35.2.2531

Nyaga, J., Barrios, E., Muthuri, C. W., Öborn, I., Matiru, V., & Sinclair, F. L. (2015). Evaluating factors influencing heterogeneity in agroforestry adoption and practices within smallholder farms in Rift Valley, Kenya. Agriculture, Ecosystems & Environment, 212, 106-118. https://doi.org/10.1016/j.agee.2015.06.013

Ofori, S. A., Cobbina, S. J., & Obiri, S. (2021). Climate change, land, water, and food security: Perspectives From Sub-Saharan Africa. Frontiers in Sustainable Food Systems, 5, 680924. https://doi.org/10.3389/fsufs.2021.680924

Pretty, J. (2011). Interdisciplinary progress in approaches to address social-ecological and ecocultural systems | Environmental Conservation | Cambridge Core. https://doi.org/10.1017/S0376892910000937

Rahman, S. A., Sunderland, T., Roshetko, J. M., & Healey, J. R. (2017). Facilitating smallholder tree farming in fragmented tropical landscapes: Challenges and potentials for sustainable land management. Journal of environmental management, 198, 110-121. https://doi.org/10.1016/j.jenvman.2017.04.047

Reardon, T., Stamoulis, K., & Pingali, P. (2007). Rural nonfarm employment in developing countries in an era of globalization. Agricultural Economics, 37, 173-183. https://doi.org/10.1111/j.1574-0862.2007.00243.x

Renard, D., Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019). https://doi.org/10.1038/s41586-019-1316-y

Sekaran, U., Lai, L., Ussiri, D. A., Kumar, S., & Clay, S. (2021). Role of integrated crop-livestock systems in improving agriculture production and addressing food security–A review. Journal of Agriculture and Food Research, 5, 100190. https://doi.org/10.1016/j.jafr.2021.100190

Singh, N. R., Singh, A., Devi, N. P., Kumar, Y. B., Sangma, R. H. C., Philanim, W. S., ... & Bhutia, P. L. (2024). Agroforestry for Soil Health. Agroforestry, 255-283.

TerAvest D., Carpenter-Boggs, L., Thierfelder, C., Reganold, J, P., Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi, Agriculture, Ecosystems & Environment, Volume 212, 2015, Pages 285-296, ISSN 0167-8809, https://doi.org/10.1016/j.agee.2015.07.011

Thornton, P. K., & Herrero, M. (2015). Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa | Nature Climate Change. https://doi.org/10.1038/nclimate2754

Thornton, P. K., Herrero, M. T., Freeman, H. A., Okeyo Mwai, A., Rege, J. E. O., Jones, P. G., & McDermott, J. J. (2007). Vulnerability, climate change and livestock-opportunities and challenges for the poor. Journal of Semi-Arid Tropical Agricultural Research. Open access

Udawatta, R. P., Rankoth, L. M., & Jose, S. (2019). Agroforestry and biodiversity. Sustainability, 11(10), 2879. https://doi.org/10.3390/su11102879

Valbuena, D., Tui, S. H. K., Erenstein, O., Teufel, N., Duncan, A., Abdoulaye, T., ... & Gérard, B. (2015). Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia. Agricultural Systems, 134, 107-118. https://doi.org/10.1016/j.agsy.2014.05.013

Wordofa, M. G., Aweke, C. S., Endris, G. S., Tolesa, G. N., Lemma, T., Hassen, J. Y., ... & Mottet, A. (2024). Multidimensional performance of agroecology in mixed and agropastoral farming systems of Ethiopia: empirical evidence based on the tool for agroecological performance evaluation (TAPE). Agroecology and Sustainable Food Systems, 48(9), 1240-1264. http://dx.doi.org/10.1080/21683565.2024.2370316