Biochar-Based Biofilter Media Improves Water Quality in Recirculating Aquaculture Systems

Main Article Content

Emily Aluoch Wafula https://orcid.org/0000-0003-1570-4919
James Onchieku https://orcid.org/0000-0003-2648-7200
Paul Orina https://orcid.org/0000-0002-3408-1035
Zipporah Gichana https://orcid.org/0000-0001-8581-510X
Kobingi Nyakeya https://orcid.org/0000-0002-2908-8005
Safina Musa https://orcid.org/0000-0002-8997-4148

Keywords

Biological filtration, cost-effective, efficiency, Nile tilapia, nutrient removal

Abstract

Maintaining water quality in recirculating aquaculture systems (RAS) for optimal fish production necessitates the use of expensive biofilters. Exploring the potential of locally available biofilter media, on the other hand, provides possibility of improving water quality and reducing operational costs. The purpose of this study was to evaluate the efficiency of biochar-based biofilters in RAS. A completely randomized design with three replicates was used to represent three distinct biofilter treatments: Treatment 1 (S. oleracea-only biofilter), Treatment 2 (biochar-only biofilter), and Treatment 3 (biochar with S. oleracea biofilter). Water quality parameters were monitored within fish tanks as well as at the inlet and outlet of each biofilter treatment. A two-way ANOVA was used to assess differences in water quality parameters and biofilter efficiency. Water temperature remained relatively low across all treatments, with mean values of 20.26±1.15°C, 20.33 ±1.12°C, and 20.22 ±1.21°C in the first, second, and third treatments, respectively. Dissolved oxygen levels varied significantly (p ˂ 0.05) between treatments, with the S. oleracea-only treatment averaging 5.99 ±1.82 mg/L, the biochar-only treatment at 5.80 ±1.68 mg/L, and the biochar with S. oleracea treatment reaching 8.06 ±26.11 mg/L. In terms of ammonia levels, the S. oleracea-only treatment had significantly higher levels (p˂0.05) at 0.49±0.09 mg/L compared to the biochar-only treatment (0.28±0.09 mg/L) and the biochar with S. oleracea treatment (0.31±0.08 mg/L). However, no significant differences in nitrite and nitrate removal were found between the biochar-only and biochar with S. oleracea biofilter treatments. These findings highlight the effectiveness of biochar-based biofilters in improving water quality and promoting aquaculture sustainability. Future research endeavors should focus on the utilization of biochar-based biofilters within large-scale or commercial RAS. The overarching aim should be to enhance aquaculture production and environmental conservation efforts.

Abstract 69 | PDF Downloads 37 DOCX Downloads 9

References

APHA (2005): Standard Methods for the Examination of Water and Wastewater. 21st ed.,American Public Health Association, Washington, DC.

Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS)analysis: Main issues on management and future challenges. AquaculturalEngineering, 51, 26-35.

Bergvik, M., Stensås, L., Handå, A., Reitan, K. I., Strand, O., & Olsen, Y. (2019). Incorporationof feed and fecal waste from salmon aquaculture in great scallops (Pecten maximus) cofed by different algal concentrations. Frontiers in Marine Science, 5, 524.

Boxman, S. E., Nystrom, M., Capodice, J. C., Ergas, S. J., Main, K. L., & Trotz, M. A. (2017). Effect of support medium, hydraulic loading rate and plant density on water quality and growth of halophytes in marine aquaponic systems. Aquaculture Research, 48(5), 24632477.

Bruno, R., Chen, W., Cottle, P., Lai, V., Loc, H., & Delson, N. (2011). Aquaponics ebb and flow mechanisms ECOLIFE foundation. MAE 156B: Fundamental Principles ofMechanical Design II, 85.

Chen, S., Ling, J., & Blancheton, J. P. (2006). Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural engineering, 34(3), 179-197.

Cheng, W., Li, H., & Yang, Y. (2016). Study on preparation of biochar and its adsorption of nitrogen and phosphorus by pyrolysis of anaerobic fermentation residue from municipalsludge. Acta Chimica Sinica, 4, 1541-1548.

Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human consumption of microplastics. Environmental science & technology, 53(12),7068-7074.

DeLong, D. P., & Losordo, T. (2012). How to start a Biofilter (p. 4). Southern regional aquaculture center.

Ebeling, J. M., & Timmons, M. B. (2010). Recirculating aquaculture. Ithaca, NY, USA:Cayuga Aqua Ventures.

Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater treatment conversion technologies and applications. Applied Sciences, 10(10), 3492.10:3492. DOI:10.3390/app1010349.

Endut, A., Jusoh, A., Ali, N. A., & Wan Nik, W. B. (2011). Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalination and water treatment, 32(1-3), 422-430.

Endut, A., Lananan, F., Abdul Hamid, S. H., Jusoh, A., & Wan Nik, W. N. (2016). Balancing of nutrient uptake by water spinach (Ipomoea aquatica) and mustard green (Brassica juncea) with nutrient production by African catfish (Clarias gariepinus) in scaling aquaponic recirculation system. Desalination and Water Treatment, 57(60), 29531 29540.

Estim, A., Saufie, S., & Mustafa, S. (2019). Water quality remediation using aquaponics sub systems as biological and mechanical filters in aquaculture. Journal of Water Process Engineering, 30, 100566.

Ferreira, C. I., Calisto, V., Otero, M., Nadais, H., & Esteves, V. I. (2016). Comparative adsorption evaluation of biochars from paper mill sludge with commercial activated carbon for the removal of fish anaesthetics from water in Recirculating Aquaculture Systems. Aquacultural Engineering, 74, 76-83.

Gichana, Z. M., Liti, D., Waidbacher, H., Zollitsch, W., Drexler, S., & Waikibia, J. (2018). Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation. Aquaculture International, 26, 1541-1572.

Gichana, Z., Meulenbroek, P., Ogello, E., Drexler, S., Zollitsch, W., Liti, D. & Waidbacher, H. (2019a). Growth and nutrient removal efficiency of sweet wormwood (Artemisia annua) in a recirculating aquaculture system for Nile tilapia (Oreochromis niloticus). Water, 11(5), 923.

Gichana, Z., Liti, D., Drexler, S. S., Zollitsch, W., Meulenbroek, P., Wakibia, J., & Waidbacher, H. (2019b). Effects of aerated and non-aerated biofilters on effluent water treatment from a small-scale recirculating aquaculture system for Nile tilapia (L.). Die Bodenkultur: Journal of Land Management, Food and Environment, 70(4), 209-219.

Gichana, Z., Liti, D., Wakibia, J., Ogello, E., Drexler, S., Meulenbroek, P., & Waidbacher, H. (2019c). Efficiency of pumpkin (Cucurbita pepo), sweet wormwood (Artemisia annua) and amaranth (Amaranthus dubius) in removing nutrients from a smallscale recirculating aquaponic system. Aquaculture International, 27, 1767-1786.

Hale, S. E., Alling, V., Martinsen, V., Mulder, J., Breedveld, G.D., & Cornelissen, G. (2013). The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 91(11), 1612–1619

Hu, Z., Lee, J. W., Chandran, K., Kim, S., Brotto, A. C., & Khanal, S. K. (2015). Effect of plant species on nitrogen recovery in aquaponics. Bioresource technology, 188, 92-98.

Lopez-Ponnada, E. V., Lynn, T. J., Peterson, M., Ergas, S. J., & Mihelcic, J. R. (2017). Application of denitrifying wood chip bioreactors for management of residential non point sources of nitrogen. Journal of biological engineering, 11, 1-14.

Martins, C. I. M., Eding, E. H., Verdegem, M. C., Heinsbroek, L. T., Schneider, O., Blancheton, J. P., & Verreth, J. A. J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural engineering, 43(3), 83-93.
DOI: 10,1016/j.aquaeng.2010.09.002.

Mota, V.C., Martins, C.I.M., Eding, E.H., Canário, A.V.M. & Verreth, J.A.J. (2016). Cortisol and testosterone accumulation in a low pH recirculating aquaculture system for rainbow trout (Oncorhynchus mykiss). Aquaculture Resource 62, 1-10.

Mnyoro, M.S., Munubi, R. N., Pedersen, L. F., & Chenyambuga, S. W. (2022). Evaluation of biofilter performance with alternative local biomedia in pilot scale recirculating aquaculture systems. Journal of Cleaner Production, 366, 132929.

Nuwansi, K. K. T., Verma, A. K., Prakash, C., Tiwari, V. K., Chandrakant, M. H., Shete, A. P., & Prabhath, G. P. W. A. (2016). Effect of water flow rate on polyculture of koi carp (Cyprinus carpio var. koi) and goldfish (Carassius auratus) with water spinach(Ipomoea aquatica) in recirculating aquaponic system. Aquaculture international, 24, 385-393.

Omorogie, J. (2014). J Environ Chem Eng. 2(1), pp. 675–684.

Paul, D., & Hall, S. G. (2021). Biochar and zeolite as alternative biofilter media for denitrification of aquaculture effluents. Water, 13(19), 2703.

Petrea, Ş. M., Cristea, V., Dediu, L., Contoman, M., Lupoae, P., & Mocamu, M. (2013). Vegetable Production in an Integrated Aquaponic System with Rainbow Trout and Spinach. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj Napoca. Animal Science & Biotechnologies, 70(1).

Pungrasmi, W., Phinitthanaphak, P., & Powtongsook, S. (2016). Nitrogen removal from a recirculating aquaculture system using a pumice bottom substrate nitrification denitrification tank. Ecological engineering, 95, 357-363.

Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: integrated fish and plant farming. FAO Fisheries and aquaculture technical paper, (589), I.https://doi.org/10.1002/pssb.201300062.

Timmons, M. B., Ebeling, J. M., Wheaton, F.W., Summerfelt, S. T. & B. J.Vinci. (2002). Recirculating aquaculture systems, 2nd Edition. Northeast Reg. Aquaculture Center Publication. No. 01-002.

Trang N., Konnerup D., Brix H., 2017 Effects of recirculation rates on water quality and Oreochromis niloticus growth in aquaponic systems. Aquacultural Engineering 78:95 104.

United Nations (2016) Global sustainable development report, 2016th edn. United Nations, New York.

Wafula, E. A., Gichana, Z. M., Onchieku, J., Chepkirui, M., & Orina, P. S. (2023). Opportunities and Challenges of Alternative Local Biofilter Media in Recirculating Aquaculture Systems. Journal of Aquatic Terrestrial Ecosystems, 1(1), 73-81.

Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9-19.https://doi.org/10.1016/j.aquaeng.2017.01.004.

Xiao, K., Liang, S., Wang, X., Chen, C., & Huang, X. (2019). Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresource technology, 271, 473-481.

Zou, Y., Hu, Z., Zhang, J., Xie, H., Guimbaud, C., & Fang, Y. (2016). Effects of pH on nitrogen transformations in media-based aquaponics. Bioresource technology, 210, 81-87.