Chronic Fluoride Toxicity Effects on Thyroid Iodine Metabolism in Xenopus laevis Tadpoles

Main Article Content

Ivy C. Ronoh

Keywords

Chronic, dosage, mortality, histology, metamorphosis, fluoride, Xenopus laevis

Abstract

Fluoride is abundantly found in the earth’s crust with most contamination of ground water occurring at levels of between 1-25 mg/l. The study aimed at evaluating the effects of chronic toxicity of fluoride (452.8µg/l) to Xenopus laevis tadpoles and to evaluate the possible interactions of 8.135µg/l triiodothyronine (T3), 11.652µg/l thyroxine (T4), 0.5µg/l Iodine and 0.005µg/l methimazole on iodine metabolism in the tadpoles. The experiments were done using Amphibian metamorphosis assay (AMA) test. The endpoints in the study were; daily observations to record the mortality of the tadpoles including any other observable changes in their behavior. For the whole duration of the experiment- 21 days, the development stages, hind-limb length (HLL), snout-vent length (SVL) and the body weights of the tadpoles were performed at the 7th and 21st day. Histology of the thyroid gland was evaluated at the termination of the experiment on day 21. Fluoride treated tadpoles showed a delay in growth and development of the tadpoles, Methimazole was able to inhibit the development of the tadpoles and prevent the tadpoles from reaching the climax of metamorphosis, T4, T3 were able to reverse chronic Fluoride toxicity in the tadpoles. The study recommends that Xenopus laevis is effective for use in laboratory experiments for study of toxicants.

Downloads

Download data is not yet available.
Abstract 31 | PDF Downloads 6

References

Abdalla, S. M., & Bianco, A. C. (2014). Defending plasma T3 is a biological priority. Clinical endocrinology, 81(5), 633-641.

Abdelaleem, M. M., El-Tahawy, N. F. G., Abozaid, S. M. M., & Abdel-Hakim, S. A. (2018). Possible protective effect of curcumin on the thyroid gland changes induced by sodium fluoride in albino rats: light and electron microscopic study. Endocr Regul, 52(2), 59-68. doi: 10.2478/enr-2018-0007

Bantle, J. A. (1991). Atlas of abnormalities.

Bayse, C. A., Marsan, E. S., Garcia, J. R., & Tran-Thompson, A. T. (2020). Thyroxine binding to type III iodothyronine deiodinase. Scientific reports, 10(1), 1-10.

Chai, L., Wang, H., Zhao, H., & Dong, S. (2017). Chronic effects of fluoride exposure on growth, metamorphosis, and skeleton development in Bufo gargarizans larvae. Bull Environ Contam Toxicol, 98(4), 496-501.

Chen, J., Cao, J., Wang, J., Jia, R., Xue, W., Li, Y., Luo, Y., & Xie, L. (2013). Effects of fluoride on growth, body composition, and serum biochemical profile in a freshwater teleost, Cyprinus carpio. Environmental Toxicology and Chemistry, 32(10), 2315-2321.

Chen, J., Chai, L., Zhao, H., Wu, M., & Wang, H. (2016). Effects of fluoride exposure on the growth, metamorphosis, and skeletal development of Rana chensinesis and Rana nigromaculata larvae. Fluoride, 49(2), 128-142.

Coady, K., Marino, T., Thomas, J., Currie, R., Hancock, G., Crofoot, J., McNalley, L., McFadden, L., Geter, D., & Klecka, G. (2010). Evaluation of the amphibian metamorphosis assay: Exposure to the goitrogen methimazole and the endogenous thyroid hormone L-thyroxine.
Environmental Toxicology and Chemistry, 29(4), 869-880. doi: 10.1002/etc.74

Degitz, S. J., Holcombe, G. W., Flynn, K. M., Kosian, P. A., Korte, J. J., & Tietge, J. E. (2005). Progress towards development of an amphibian-based thyroid screening assay using Xenopus laevis. Organismal and thyroidal responses to the model compounds 6-propylthiouracil, methimazole, and thyroxine. Toxicological Sciences, 87(2), 353-364.

Dratman, M. B., & Martin, J. V. (2020). The many faces of thyroxine. AIMS neuroscience, 7(1), 17.

Du, Y., Fu, X., Jin, J., Li, Z., Xu, K., Guo, M., Hou, X., Feng, Z., Ding, L., & Gong, Y. (2022). Effects of SNPs in SOD2 and SOD3 interacted with fluoride exposure on the susceptibility of dental fluorosis. International Journal of Hygiene and Environmental Health, 239, 113879.

Huq, F. (2008). Molecular Modelling Analysis of the Metabolism of Methimazole. J Pharmacol Toxicol, 3(1), 11-19.

Jarosz, P. M., Gołacki, J., & Matuszek, M. (2022). Is water fluoridation correlated with hypothyroidism? Journal of Education, Health and Sport, 12(7), 121-126.

Kowalik, M. A., Columbano, A., & Perra, A. (2018). Thyroid Hormones, Thyromimetics and Their Metabolites in the Treatment of Liver Disease. Front Endocrinol (Lausanne), 9, 382. doi: 10.3389/fendo.2018.00382

Ling, Y., Podgorski, J., Sadiq, M., Rasheed, H., Eqani, S. A. M. A. S., & Berg, M. (2022). Monitoring and prediction of high fluoride concentrations in groundwater in Pakistan. Science of The Total Environment, 156058.

Malin, A. J., Riddell, J., McCague, H., & Till, C. (2018). Fluoride exposure and thyroid function among adults living in Canada: Effect modification by iodine status. Environ Int, 121, 667-674.

Mosonik, C. B. (2015). Assessment of Fluoride Levels in Different Water Sources in Lower Region of Bomet County, Kenya and Remediation Using Moringa oleifera Seed Cake. JKUAT.

OECD. (2009). OECD guideline for the testing of chemicals 231.

Ontumbi, G., Ucakuwun, E., & Munyao, T. (2020). Variation of Fluoride Levels in Surface Geology: A Study of River Njoro Catchment, Kenya.

Osano, O., Oladimeji, A. A., & Admiraal, W. (2002). Teratogenic Effects of Amitraz, 2,4-Dimethylaniline, and Paraquat on Developing Frog (Xenopus) Embryos. Archives of Environmental Contamination and Toxicology, 43(1), 42–49.

Ramhøj, L., Svingen, T., Frädrich, C., Rijntjes, E., Wirth, E. K., Pedersen, K., Köhrle, J., & Axelstad, M. (2022). Perinatal exposure to the thyroperoxidase inhibitors methimazole and amitrole perturbs thyroid hormone system signaling and alters motor activity in rat offspring. Toxicology Letters, 354, 44-55.

Ronoh, C., Osano, O., & Rono, M. (2022). Reversal of Fluoride Induced Teratogenicity in Xenopus laevis using Iodine and Thyroxine. Africa Environmental Review Journal, 5(1), 59-68.

Solanki, Y. S., Agarwal, M., Gupta, A., Gupta, S., & Shukla, P. (2022). Fluoride occurrences, health problems, detection, and remediation methods for drinking water: A comprehensive review. Science of The Total Environment, 807, 150601.

Sorrenti, S., Baldini, E., Pironi, D., Lauro, A., D’Orazi, V., Tartaglia, F., Tripodi, D., Lori, E., Gagliardi, F., & Praticò, M. (2021). Iodine: its role in thyroid hormone biosynthesis and beyond. Nutrients, 13(12), 4469.

Sugiyama, S.-i., Shimada, N., Miyoshi, H., & Yamauchi, K. (2005). Detection of Thyroid System–Disrupting Chemicals Using in Vitro and in
Vivo Screening Assays in Xenopus laevis. Toxicological Sciences, 88(2), 367-374.

Tietge, J. E., Holcombe, G. W., Flynn, K. M., Kosian, P. A., Korte, J. J., Anderson, L. E., Wolf, D. C., & Degitz, S. J. (2005). Metamorphic inhibition of Xenopus laevis by sodium perchlorate: Effects on development and thyroid histology. Environmental Toxicology and Chemistry, 24(4), 926-933. doi: 10.1897/04-105r.1

Waugh, D. T. (2019). Fluoride exposure induces inhibition of sodium/iodide symporter (NIS) contributing to impaired iodine absorption and iodine deficiency: molecular mechanisms of inhibition and implications for public health. Int J Environ Res Public Health, 16(6), 1086.

Yao, X., Chen, X., Zhang, Y., Li, Y., Wang, Y., Zheng, Z., Qin, Z., & Zhang, Q. (2017). Optimization of the T3-induced Xenopus metamorphosis assay for detecting thyroid hormone signaling disruption of chemicals. J Environ Sci (China), 52, 314-324. doi: 10.1016/j.jes.2016.09.020

Zhao, H., Chai, L., & Wang, H. (2013). Effects of fluoride on metamorphosis, thyroid and skeletal development in Bufo gargarizans tadpoles. Ecotoxicology, 22(7), 1123-1132. doi: 10.1007/s10646-013-1099-0